Neighborhood total domination of a graph and its complement
نویسندگان
چکیده
A neighborhood total dominating set in a graph G is a dominating set S of G with the property that the subgraph induced by N(S), the open neighborhood of the set S, has no isolated vertex. The neighborhood total domination number γnt(G) is the minimum cardinality of a neighborhood total dominating set of G. Arumugam and Sivagnanam introduced and studied the concept of neighborhood total domination in graphs [S. Arumugam and C. Sivagnanam, Opuscula Math. 31 (2011) 519–531]. They proved that if G and G are connected, then γnt(G) + γnt(G) ≤ { d 2 e+ 2 if diam(G) ≥ 3. d 2 e+ 3 if diam(G) = 2. , where G is the complement of G. The problem of characterizing graphs attaining equality in the previous bounds was left as an open problem by the authors. In this paper, we address this open problem by studying sharpness and strictness of the above inequalities. ∗ Also at Department of Mathematics, University of Tafresh, Tafresh, Iran. D.A. MOJDEH ET AL. /AUSTRALAS. J. COMBIN. 65 (1) (2016), 37–44 38
منابع مشابه
Some properties and domination number of the complement of a new graph associated to a commutative ring
In this paper some properties of the complement of a new graph associated with a commutative ring are investigated ....
متن کاملLower bounds on the signed (total) $k$-domination number
Let $G$ be a graph with vertex set $V(G)$. For any integer $kge 1$, a signed (total) $k$-dominating functionis a function $f: V(G) rightarrow { -1, 1}$ satisfying $sum_{xin N[v]}f(x)ge k$ ($sum_{xin N(v)}f(x)ge k$)for every $vin V(G)$, where $N(v)$ is the neighborhood of $v$ and $N[v]=N(v)cup{v}$. The minimum of the values$sum_{vin V(G)}f(v)$, taken over all signed (total) $k$-dominating functi...
متن کاملSigned total Italian k-domination in graphs
Let k ≥ 1 be an integer, and let G be a finite and simple graph with vertex set V (G). A signed total Italian k-dominating function (STIkDF) on a graph G is a functionf : V (G) → {−1, 1, 2} satisfying the conditions that $sum_{xin N(v)}f(x)ge k$ for each vertex v ∈ V (G), where N(v) is the neighborhood of $v$, and each vertex u with f(u)=-1 is adjacent to a vertex v with f(v)=2 or to two vertic...
متن کاملNonnegative signed total Roman domination in graphs
Let $G$ be a finite and simple graph with vertex set $V(G)$. A nonnegative signed total Roman dominating function (NNSTRDF) on a graph $G$ is a function $f:V(G)rightarrow{-1, 1, 2}$ satisfying the conditionsthat (i) $sum_{xin N(v)}f(x)ge 0$ for each $vin V(G)$, where $N(v)$ is the open neighborhood of $v$, and (ii) every vertex $u$ for which $f(u...
متن کاملTotal $k$-Rainbow domination numbers in graphs
Let $kgeq 1$ be an integer, and let $G$ be a graph. A {it$k$-rainbow dominating function} (or a {it $k$-RDF}) of $G$ is afunction $f$ from the vertex set $V(G)$ to the family of all subsetsof ${1,2,ldots ,k}$ such that for every $vin V(G)$ with$f(v)=emptyset $, the condition $bigcup_{uinN_{G}(v)}f(u)={1,2,ldots,k}$ is fulfilled, where $N_{G}(v)$ isthe open neighborhood of $v$. The {it weight} o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Australasian J. Combinatorics
دوره 65 شماره
صفحات -
تاریخ انتشار 2016